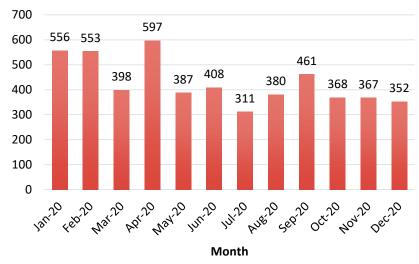
2020 STATISTICS REPORT

THINKING GREEN DIGEST

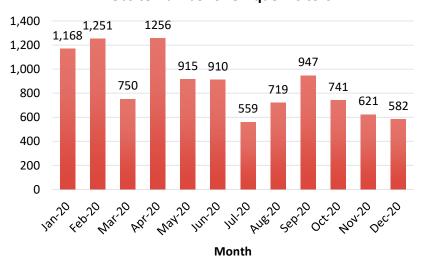
Contents

Air Quality	1
Annual Automatic Data Summary Reports	2
Rosia Road: 1 st January to 31 st December 2020	2
Exceedences	5
South District Power Stations	5
Bleak House: 1st January to 31st December 2020	5
Exceedances	7
Witham's Road: 1st January to 31st December 2020	7
Exceedances	8
Overview of Gibraltar's automatic air pollution measurement	8
Compliance with Air Quality Limit Values	9
Review of Gibraltar's non-automatic air pollution measurements	10
Diffusion Tube Networks	11
Summary of Hydrocarbons	11
Nitrogen Dioxide Network	12
Natural Resources	14
Bathing Water	14
Coastal Water Monitoring	16
Coastal Monthly and Quarterly Data for 2020	18
Groundwater Monitoring	20
Habitats	24
Birds	24
Nesting Birds of Prey	24
Lesser and Common Kestrel	24
Yellow-legged Gulls	24
Peregrine Falcon (young fledged by site)	25
Mammals	25
Barbary Macaques	25
Waste	27
Hazardous Waste	27
Municipal Waste	30
Recycling	30
WEEE	31
Incineration Waste	32

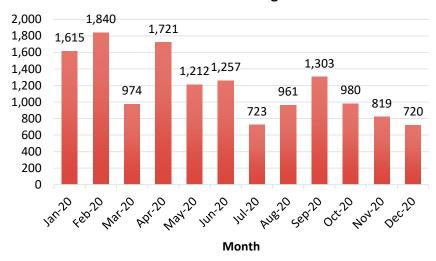
Energy	33
Lighting	33
Solar Energy	33



Air Quality

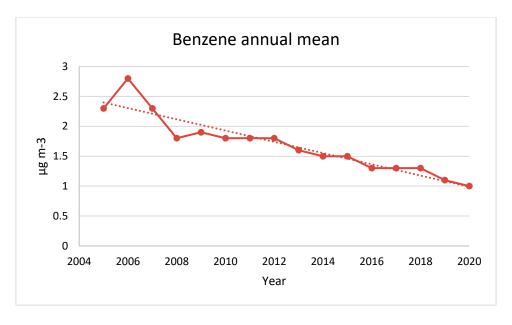

In Gibraltar, a formalised air quality monitoring programme is in operation consisting of a variety of methodologies, and taking place at selected locations. Developed in accordance with European Union (EU) directive requirements, air quality in Gibraltar since 2008 has been monitored using passive sampling, active (semi-automatic) sampling, and automatic point monitoring. Deployed at sites throughout Gibraltar, these work to provide a comprehensive understanding of variations in air quality according to location (urban/suburban), time, and season.

With some results available in real time, these as well as historical records, can be accessed by the public at www.gibraltarairquality.gi. The table below provides a record of activity on Gibraltar's air quality website in 2020.


Website Number of Visits

Website Number of Unique Visitors

Website Number of Pageviews

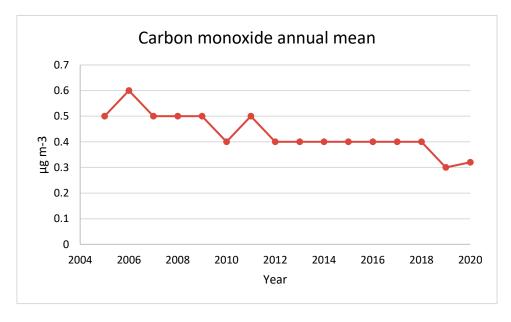

Annual Automatic Data Summary Reports Rosia Road: 1st January to 31st December 2020

At Rosia Road, concentrations for pollutants such as benzene, carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2) are logged. Records for 2020 are as follows:

Benzene

POLLUTANT	BENZ
Maximum hourly mean	22 μg m ⁻³
Maximum running 8-hour mean	8.5 μg m ⁻³
Maximum running 24-hour mean	8.5 μg m ⁻³
Maximum daily mean	4.5 μg m ⁻³
Data capture	94 %

Rosia Road benzene results 2020.

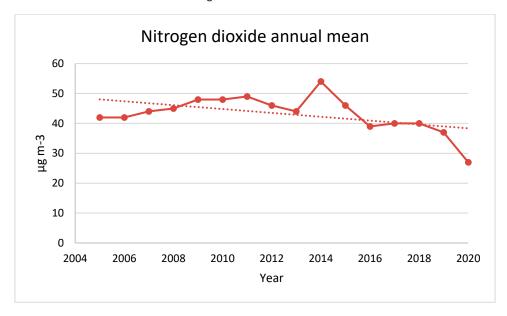


Rosia Road benzene annual mean.

Carbon Monoxide

POLLUTANT	CO
Maximum hourly mean	3.3 μg m ⁻³
Maximum running 8-hour mean	1.6 μg m ⁻³
Maximum running 24-hour mean	0.94 μg m ⁻³
Maximum daily mean	0.85 μg m ⁻³
Data capture	50 %

Rosia Road carbon monoxide monitored results 2020.

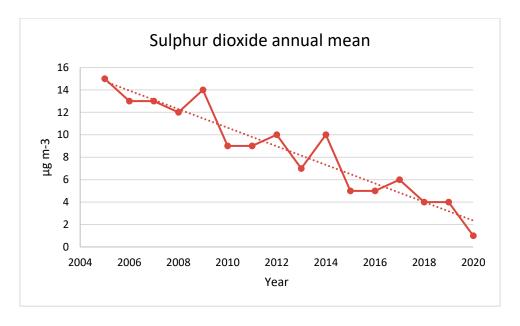


Rosia Road carbon monoxide annual mean.

Nitrogen Dioxide

POLLUTANT	NO ₂
Maximum hourly mean	112 $\mu g \ m^{-3}$
Maximum running 8-hour mean	89 μg m ⁻³
Maximum running 24-hour mean	78 μg m ⁻³
Maximum daily mean	76 μg m ⁻³
Data capture	94 %

Rosia Road nitrogen dioxide monitored results 2020.



Rosia Road nitrogen dioxide annual mean.

Sulphur Dioxide

POLLUTANT	SO ₂
Maximum hourly mean	79 μg m ⁻³
Maximum running 8-hour mean	37 μg m ⁻³
Maximum running 24-hour mean	16 μg m ⁻³
Maximum daily mean	15 μg m ⁻³
Data capture	79 %

Rosia Road sulphur dioxide monitored results 2020.

Rosia Road sulphur dioxide annual mean.

Exceedences

Pollutant	Public Health (Air Quality Limit Values) Rules 2002, (Amendment) Rules 2003 and (Ozone) Rules 2004	Exceedances
Carbon Monoxide	Running 8-hour mean > 10.0 mg m ⁻³	0
Nitrogen Dioxide	Hourly mean > 200 μg m ⁻³	0
Sulphur Dioxide	Annual mean > 20 µg m ⁻³	0

Rosia Road pollutant exceedances for 2020.

No threshold exceedances were detected for Rosia Road in 2020.

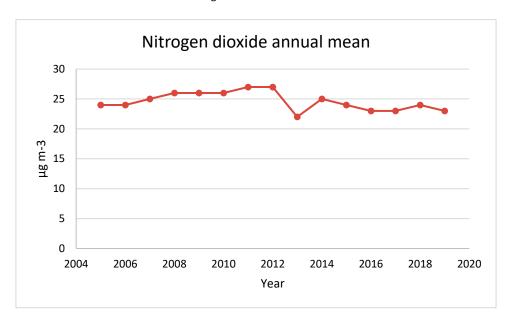
South District Power Stations

The table below highlights the engine operating hours of South District power stations in 2020.

Engine Hours		
	Total 2020	
GMES South Temp. Gen. (Sets 21-30)	12,560	
Portman Temp. Gen. (Sets 1-6)	1,072	
	(Decommissioned	
	30/06/2020)	

South District Power Stations engine hours in 2020.

Bleak House: 1st January to 31st December 2020

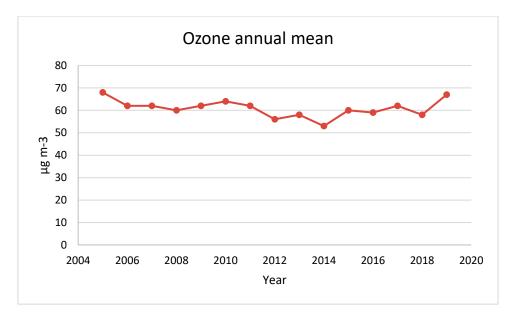

At Bleak House, nitrogen dioxide and ozone (O3) concentrations are monitored. Results for the suburban area in 2020 are as follows:

Nitrogen Dioxide

POLLUTANT	NO ₂
Maximum hourly mean	94 μg m ⁻³

Maximum running 8-hour mean	76 μg m ⁻³
Maximum running 24-hour mean	67 μg m ⁻³
Maximum daily mean	56 μg m ⁻³
Data capture	96 %

Bleak House nitrogen dioxide monitored results 2020.



Bleak House nitrogen dioxide annual mean.

Ozone

POLLUTANT	O ₃
Maximum hourly mean	148 $\mu g \ m^{-3}$
Maximum running 8-hour mean	140 μg m ⁻³
Maximum running 24-hour mean	128 μg m ⁻³
Maximum daily mean	122 μg m ⁻³
Data capture	96 %

Bleak House ozone monitored results 2020.

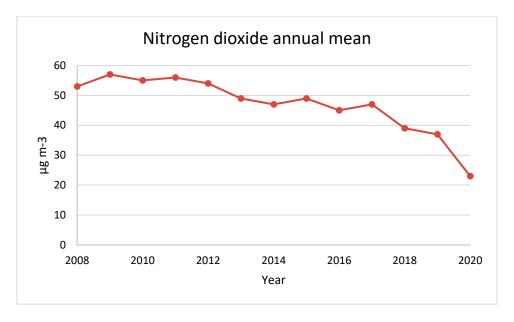
Bleak House ozone annual mean.

Exceedances

Pollutant	Public Health (Air Quality Limit Values) Rules 2002, (Amendment) Rules 2003 and (Ozone) Rules 2004	Exceedances
Nitrogen Dioxide	Hourly mean > 200 μg m ⁻³	0
Ozone	Running 8-hour mean > 120 μg m ⁻³	2

Bleak House pollutant exceedances for 2020.

Data collected for 2020 shows that there were a total of 2 incidences of Ozone exceedance at Bleak House. Ozone is formed by the sunlight-initiated oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NO_x). Not produced locally, this pollutant is created from ozone precursors that are predominantly of a transboundary nature.


Witham's Road: 1st January to 31st December 2020

As the third automatic monitoring station, Witham's Road is located in the South District and within range of the South District power stations. Positioned here intentionally to observe the effects of traffic and power station emissions on pollutant levels, nitrogen dioxide is recorded at this site and has been regulated since 2008.

Nitrogen Dioxide

POLLUTANT	NO ₂
Maximum hourly mean	107 μg m ⁻³
Maximum running 8-hour mean	80 μg m ⁻³
Maximum running 24-hour mean	67 μg m ⁻³
Maximum daily mean	67 μg m ⁻³
Data capture	91 %

Witham's Road nitrogen dioxide monitored results 2020.

Witham's Road nitrogen dioxide annual mean.

Exceedances

Pollutant	Public Health (Air Quality Limit Values) Rules 2002, (Amendment) Rules 2003 and (Ozone) Rules 2004	Exceedances
Nitrogen Dioxide	Hourly mean > 200 μg m ⁻³	0

Witham's road pollutant exceedances for 2020.

In 2020, no threshold exceedances were recorded at Witham's road.

Overview of Gibraltar's automatic air pollution measurement

To ensure the accuracy and reliability of all results documented by Gibraltar's air quality monitoring programme, substantial data capture is necessary. The table below provides an indication on Gibraltar's percentage of data capture, compared to that of the UK.

2020	CO	NO2	О3	PM10	PM25	SO2
Number of Stations	7	160	75	93	82	29
Number of stations < 85 %	2	20	11	7	7	12
Number of stations < 90%	4	28	12	10	13	15
Average data capture (%) (UK)	86.9	92	91.7	94.5	93.4	81.7
Average data capture (%) (Gib)	85	90.7	81	79	79	98

Data capture 2020.

Compliance with Air Quality Limit Values

To ensure compliance with air quality limit values, it is necessary to compare gathered data with relevant policy thresholds. Within this section, pollutants from the automatic monitoring framework (carbon monoxide, nitrogen dioxide, sulphur dioxide and ozone) are evaluated, with failures to meet standards highlighted in red, and compliant values highlighted in green.

Air quality objective for CO (as maximum daily	Recorded levels (as maximum daily running			
running 8hr mean)	8hr mean)			
10 mg m ⁻³	1.6 mg m- ³			
Automatic measuren	cont for CO in 2020			

Air Quality Objective for NO₂	Recorded Annual Mean
40 μg m ⁻³	27 μg m-³ (Rosia Road)
	23 μg m-³ (Witham's Road)
	19 μg m-³ (Bleak House)

Recorded annual mean for NO₂ in 2020.

Air Quality Objective for NO ₂ (1 hour mean)	Recorded exceedances			
200 μg m ⁻³ not to be exceeded more than 18	0 (Rosia Road)			
times per year	0 (Witham's Road)			
_	0 (Bleak House)			

Exceedances recorded for one-hour mean for Nitrogen Dioxide in 2020.

Air Quality Objective for SO ₂ (Daily Mean)	Recorded exceedances
125 μg m ⁻³ not to be exceeded more than 3 times	0
per year	
350 μg m ⁻³ not to be exceeded more than 24 times	0
per year	-

Recorded daily and hourly exceedances for Sulphur dioxide in 2020.

Air Quality Objective for Benzene (Annual Mean)	Recorded Annual Mean			
5 μg m ⁻³	1 μg m ⁻³			

Recorded annual mean for Benzene in 2020.

Air Quality Objective for Ozone (Maximum Daily 8 Hour Mean)

Maximum rolling 8-hr mean (μg m-3)

120 μg m⁻³ not to be exceeded more than 25 days per calendar year, averaged over 3 years.

 $140~\mu g~m^{\text{-}3}$ Target exceeded 2 times in 2020

Maximum rolling 8-hour mean for Ozone in 2020.

Review of Gibraltar's non-automatic air pollution measurements

As part of Gibraltar's non-automatic monitoring programme, concentrations of particulates and heavy metals such as arsenic (As), cadmium (Cd), nickel (Ni), and lead (Pb) are measured. Assessed against limit values and objectives, the following series of data highlights compliant figures in green and non-compliant in red.

Lead

Air Quality Objective for Lead (measured as an annual mean)	Recorded Annual Mean
0.5 μg m ⁻³	0.0043 μg m ⁻³ (Rosia Road)
	0.004 μg m- ³ (Bleak House)

Recorded annual mean for Lead in 2020.

Particulate Matter (PM₁₀)

Air Quality Objective for PM ₁₀ (measured as an annual mean)	Recorded Annual Mean				
	22 μg m ⁻³ (Rosia Road)				
	20 μg m ⁻³ (Bleak House)				
Air Quality Objective for PM ₁₀ (measured as a	No. of avecadances of maximum daily mean				
daily mean)	No. of exceedances of maximum daily mean				
	1 (Rosia Road)				

 $PM_{10}\ recorded\ annual\ mean\ and\ compliance\ in\ 2020.$

	2012	2013	2014	2015	2016	2017	2018	2019	2020
% Data Capture	90	73	82	94	93	81	86	75	33
Annual Mean PM ₁₀ (40 μg m ⁻³)*	34	36	36	31	28	28	27	26	22
Max. 24-hour mean PM ₁₀	83	88	155	41	41	102	39	36	30

Days > 50 $\mu g m^{-3}$	18	15	17	16	11	11	11	1	1
(35 day limit)*								_	_

Breakdown of PM_{10} statistics for Rosia Road.

Particulate Matter (PM_{2.5})

Air Quality Objective for PM _{2.5} (measured as an annual mean)	Recorded Annual Mean
20μg m ⁻³	10 μg m ⁻³

PM_{2,5} recorded annual mean for 2020.

Arsenic, Cadmium, Nickel & Poly Aromatic Hydrocarbons (measured as Benzo(a)pyrene).

Pollutant	Parameter	Target Value	Recorded Average	
Arconic	Annual average	6 ng m ⁻³	1.3 ng m-3 (Rosia Road) 1.2 ng m-3 (Bleak House) 1.6 ng m-3 (Rosia Road)	
Arsenic	Annual average	6 ng m ⁻³		
Cadasissa	Cadmium Annual average 5 ng m ⁻³		1.6 ng m- ³ (Rosia Road)	
Cadmium		5 ng m	1.5 ng m- ³ (Bleak House)	
NE d al	A		7.1 ng m- ³ (Rosia Road)	
Nickel	Annual average	20 ng m ⁻³	7.5 ng m- ³ (Bleak House)	
ВАР	Annual average	1 ng m ⁻³	0.079 ng m- ³ (Rosia Road)	

 $^{4^{\}text{th}}$ Daughter Directive pollutant recordings for 2020.

Diffusion Tube Networks

Integral to the non-automatic monitoring programme, a diffusion tube based method is used to assess monthly average concentrations of nitrogen dioxide and benzene at a number of sites across Gibraltar. Diffusion tube results are indicative only and not as reliable as the automatic monitoring network.

Summary of Hydrocarbons

Below, average hydrocarbon concentrations for benzene are shown. With a pollutant threshold of 5 μg m-³, the table highlights where compliance has been achieved, and also provides a comparison to the previous year's results to determine whether there are improvements being made.

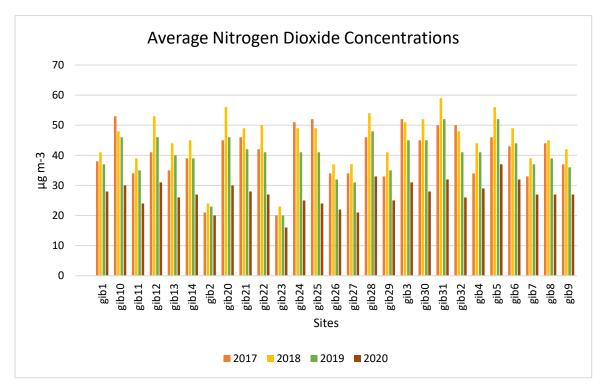
Site ID	Site Name	2019 Benzene (μg m-3)	2020 Benzene (μg m-3)	Difference
gib1	Rosia Road	1	0.8	-0.2
gib15	Catalan Bay Road	0.4	0.4	0
gib16	Laguna Estate	0.7	0.5	-0.2
gib17	Kings Lines Fuel Depot	0.7	0.7	0

gib18	Moorish Castle Estate	0.7	0.6	-0.1
gib19	North Mole	0.8	0.8	0
gib2	Bleak House	0.5	0.5	0
gib20	Sundial Roundabout	1.1	0.9	-0.2
gib21	Anchorage Rosia Road	0.6	0.6	0
gib3	Jumpers	1	0.8	-0.2
gib30	Governors Meadow House	0.6	0.6	0
gib4	Devils Tower Road	0.6	0.5	-0.1
gib5	Glacis Road	1.3	1.0	-0.3
gib6	Queensway	1	0.8	-0.2
gib7	Harbour Views	0.7	0.6	-0.1

Average hydrocarbon concentrations for Benzene 2020.

Compliance across all sites was achieved with readings measuring well below the 5 $\mu g \ m^{\text{-}3}$ threshold.

Nitrogen Dioxide Network


The following table shows diffusion tube readings of nitrogen dioxide at a variety of locations throughout Gibraltar. The target limit for this pollutant is $40 \, \mu g \, m^{-3}$.

Site ID	Site Name	2019 NO ₂ (μg m-3)	2020 NO ₂ (μg m-3)	Difference
gib1	Rosia Road	37	28	-9
gib10	South Barracks Road	46	30	-16
gib11	Main Street	35	24	-11
gib12	Water Gardens	46	31	-15
gib13	George Don House	40	26	-14
gib14	Prince Edwards Road	39	27	-12
gib2	Bleak House	23	20	-3
gib20	Sundial Roundabout	46	30	-16
gib21	Anchorage Rosia Road	42	28	-14
gib22	Rosia Promenade	41	27	-14
gib23	Lathbury Industrial Park	20	16	-4
gib24	Upper Withams Entrance	41	25	-16
gib25	Churchill House	41	24	-17
gib26	Alameda Gardens Theatre	32	22	-10
gib27	Alameda Gardens Access Road	31	21	-10
gib28	Rock Hotel	48	33	-15
gib29	Gardiners Road	35	25	-10
gib3	Jumpers	45	31	-14
gib30	Governors Meadow House	45	28	-17
gib31	Dockyard Road	52	32	-20
gib32	Woodford Cottage	41	26	-15
gib4	Devils Tower Road	41	29	-12
gib5	Glacis Road	52	37	-15

gib6	Queensway	44	32	-12
gib7	Harbour Views	37	27	-10
gib8	Red Sands Road	39	27	-12
gib9	Lime Kiln Road	36	27	-9

Average nitrogen dioxide concentrations in 2020.

Compliance across all sites was achieved with readings measuring below the 40 $\mu g\ m\text{-}^3$ threshold in 2020.

Average nitrogen dioxide concentrations 2017-2020.

Natural Resources Bathing Water

The Bathing Water Directive (2006/7/EC), adopted in 15th February 2006, was transposed into Gibraltar law by the Environment (Quality of Bathing Water) Regulations 2009. In accordance with the requirements of this legislation, regular monitoring is carried out at Gibraltar's six bathing areas - Camp Bay, Catalan Bay, Eastern Beach, Little Bay, Sandy Bay Western Beach — and more. The number of samples taken at respective sites in 2020 are as follows:

Site Name	Number of samples taken
Camp Bay	26
Little Bay	26
Catalan Bay	25
Sandy Bay	26
Sandy Bay Outer Groyne	18
Eastern Beach	25
Eastern Beach Frontier Fence	24
Western Beach	168
GASA pier	4
Rosia Bay Beach	21
Rosia Bay Pier	18

Number of samples taken as part of Environment (Quality of Bathing Water) Regulations 2009 monitoring.

Further to these legislative requirements, there is also a need to monitor for two microbiological indicators of faecal contamination: E Coli and intestinal enterococci. Classified into four categories being: "excellent", "good", "sufficient", or "poor", the analyses of these samples consider the results over the current bathing season and the preceding three years instead of a single year's result. In this way, classifications will be less susceptible to bad weather or one-off incidents, and provide results that are more reliable.

Camp Bay No. of occasions of low water quality

-		
Year	E.Coli	Intestinal enterococci
Teal	>500 cfu/100ml	>185 cfu/100ml
2017	0	0
2018	0	0
2019	0	0
2020	0	0

Incidences of Low Water Quality at Camp Bay.

Little Bay No. of occasions of low water quality

Year	E.Coli >500 cfu/100ml	Intestinal enterococci >185 cfu/100ml
2017	0	0
2018	0	1
2019	0	1
2020	0	0

Incidences of Low Water Quality at Little Bay.

Catalan Bay No. of occasions of low water quality

Year	E.Coli	Intestinal enterococci
	>500 cfu/100ml	>185 cfu/100ml
2017	1	1
2018	0	0
2019	0	1
2020	0	2

Incidences of Low Water Quality at Catalan Bay.

Sandy Bay No. of occasions of low water quality

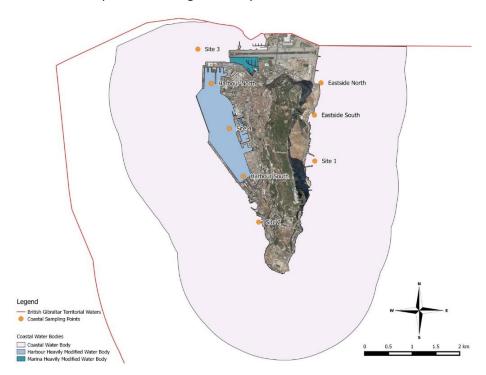
Year	E.Coli	Intestinal enterococci	
rear	>500 cfu/100ml	>185 cfu/100ml	
2017	0	0	
2018	0	0	
2019	1	1	
2020	0	1	

Incidences of Low Water Quality at Sandy Bay.

Eastern Beach No. of occasions of low water quality

Year	E.Coli >500 cfu/100ml	Intestinal enterococci >185 cfu/100ml	
2017	0	0	
2018	0	0	
2019	0	0	
2020	0	0	

Incidences of Low Water Quality at Eastern Beach.


Western Beach No. of occasions of low water quality

		• •
V	E.Coli	Intestinal enterococci
Year	>500 cfu/100ml	>185 cfu/100ml
2017	43	36
2018	97	88
2019	44	59
2020	9	18

Incidences of Low Water Quality at Western Beach.

Coastal Water Monitoring

The Department of the Environment and Climate Change carries out coastal water sampling on a regular basis at locations detailed on the map provided. In line with the Water Framework Directive (WFD) 2000/60/EC, a large variety of chemical and physio-chemical parameters are monitored at different locations and frequencies throughout the year.

Coastal water sampling points.

Frequency		
Monthly		
4 times per year		

Metals	
Cadmium and its compounds	4 times per year
Lead and its compounds	4 times per year
Mercury and its compounds	4 times per year
Nickel and its compounds	4 times per year
Polyaromatic hydrocarbons	
Anthracene	4 times per year
Fluoranthene	4 times per year
Naphthalene	4 times per year
(Benzo(a)pyrene)	4 times per year
(Benzo(b)fluoranthene)	4 times per year
(Benzo(g,h,i)perylene)	4 times per year
(Benzo(k)fluoranthene)	4 times per year
(Indeno(1,2,3-cd)pyrene)	4 times per year
Chlorinated Hydrocarbons	
1,2-Dichloroethane	4 times per year
Dichloromethane	4 times per year
Hexachlorobenzene	4 times per year
Pentachlorobenzene	4 times per year
Trichlorobenzenes (1,2,4-Trichlorobenzene)	4 times per year
Trichloromethane (Chloroform)	4 times per year
TBT	
Tributyltin compounds (Tributyltin-cation)	4 times per year
Other hydrocarbons	
C10-13-chloroalkanes	4 times per year
Benzene	4 times per year
BDEs	
Brominated diphenylethers	4 times per year
DEHP	
Di(2-ethylhexyl)phthalate	4 times per year
Urons	
Diuron	4 times per year
Isoproturon	4 times per year
Phenols	
Nonylphenols (4-(para)-nonylphenol)	4 times per year
Octylphenols (para-tert-octylphenol)	4 times per year
Pentachlorophenol	4 times per year
Other pollutants	A Aires and a second
Chromium	4 times per year
Copper	4 times per year
Zinc	4 times per year
Biological parameters Phytoglaphton, Abundance & composition (Abn. & Comp.)	A times per year
Phytoplankton - Abundance & composition (Abn. & Comp.)	4 times per year
Benthic macroinvertebrates - Abundance, composition &	Every 6 years
biomass	

Coastal Monthly and Quarterly Data for 2020

		Site 1. Sandy Bay 08/01/20	Site 2. Camp Bay 08/01/20	Site 3. Runway 08/01/20	Site 4. Mid Harbour 08/01/20
Analyte	Units				
Nitrogen as N	mg/l	<0.5	<0.5	<0.5	<0.5
Ammoniacal Nitrogen,	mg/l	<0.100	<0.100	<0.100	<0.100
Filtered as N					
Nitrite, Filtered as N	mg/l	<0.0200	<0.0200	<0.0200	<0.0200
Nitrogen : Total Oxidised,	mg/l	<0.00400	<0.00400	< 0.00400	<0.00400
Filtered as N					
Orthophosphate, Filtered as	mg/l	<0.100	<0.100	<0.100	<0.100
Р					
Phosphorus : Total	mg/l	<0.0100	<0.0100	<0.0100	<0.0100
Chlorophyll, Acetone Extract	ug/l	<0.0200	<0.0200	<0.0200	<0.0200
Solids, Suspended at 105 C	mg/l	<3.00	<3.00	<3.00	<3.00
Nitrate, Filtered as N	mg/l	<0.100	<0.100	<0.100	<0.100

January 2020 Coastal Monitoring Results.

		Site 1. Sandy Bay 11/02/20	Site 2. Camp Bay 11/02/20	Site 3. Runway 11/02/20	Site 4. Mid Harbour 11/02/20
Analyte	Units				
Cadmium	ug/l	<0.03	<0.03	<0.03	<0.03
Lead	ug/l	<0.04	0.08	0.12	0.25
Nickel	ug/l	<0.3	<0.3	<0.3	<0.3
DDT : Sum of components	ug/l	<0.0050	<0.0050	<0.0050	<0.0050
HCH: Total Isomers (Alpha,	ug/l	<0.013	<0.013	<0.013	< 0.013
Beta, Gamma, Delta, Epsilon)					
4-Nonylphenol Branched	ug/l	<0.4	<0.4	<0.4	<0.6
4-Nonylphenol Diethoxylate	ug/l	<0.2	<0.2	<0.2	<0.3
(Isomeric mix)					
4-Nonylphenol	ug/l	<0.2	<0.2	<0.2	<0.3
Monoethoxylate (Isomeric mix)					
4-Nonylphenol Triethoxylate	ug/l	<0.4	<0.4	<0.4	<0.6
(Isomeric mix)					
Nonylphenol ethoxylates (1-4 EO)	ug/l	<0.6	<0.6	<0.6	<2
Octylphenol ethoxylates (1-2	ug/l	<0.2	<0.2	<0.2	<0.3
EO)	/1	40.1	10.1	10.1	10.2
p-tert-Octylphenol	ug/l	<0.1	<0.1	<0.1	<0.2
pTert-Octylphenol	ug/l	<0.1	<0.1	<0.1	<0.2
Diethoxylate		1			

pTert-Octylphenol	ug/l	<0.1	<0.1	<0.1	<0.2
Monoethoxylate	41	0.0	.0.0		
Di-2-ethylhexyl phthalate :-	ug/l	<0.2	<0.2	<0.2	<0.2
{DEHP}	/1	40 001	40.001	40 001	40 001
Aldrin	ug/l	<0.001	<0.001	<0.001	<0.001
DDT -op	ug/l	<0.003	<0.003	<0.003	<0.003
DDT -pp	ug/l	<0.002	<0.002	<0.002	<0.002
Dieldrin	ug/l	<0.002	<0.002	<0.002	<0.002
Endosulfan A	ug/l	<0.003	<0.003	<0.003	<0.003
Endosulfan B	ug/l	<0.004	<0.004	<0.004	<0.004
Endrin	ug/l	<0.003	<0.003	<0.003	<0.003
HCH -alpha	ug/l	<0.003	<0.003	<0.003	<0.003
HCH -beta	ug/l	<0.003	<0.003	<0.003	<0.003
HCH -delta	ug/l	<0.001	<0.001	<0.001	<0.001
HCH -epsilon	ug/l	<0.003	<0.003	<0.003	<0.003
HCH -gamma :- {Lindane}	ug/l	<0.003	<0.003	<0.003	<0.003
Isodrin	ug/l	<0.001	<0.001	<0.001	<0.001
Pentachlorobenzene	ug/l	<0.001	<0.001	<0.001	<0.001
Trifluralin	ug/l	<0.002	<0.002	<0.002	<0.002
Atrazine	ug/l	-	-	-	-
Chlorpyrifos-ethyl	ug/l	-	-	-	-
Chlorpyrifos-methyl	ug/l	-	-	-	-
Dichlorvos	ug/l	-	-	-	-
Simazine	ug/l	-	-	-	-
Terbutryn	ug/l	-	-	-	-
Tributyl Tin as Cation	ug/l	<0.0005	<0.0005	<0.0005	0.0022
Anthracene	ug/l	<0.01	<0.01	<0.01	< 0.01
Aclonifen	ug/l	<0.0001	<0.0001	<0.0001	<0.0001
Alachlor	ug/l	<0.0001	<0.0001	<0.0001	<0.0001
Bifenox	ug/l	<0.0001	<0.0001	<0.0001	<0.0001
Chlorfenvinphos	ug/l	<0.0001	<0.0001	<0.0001	<0.0001
Quinoxyfen	ug/l	<0.0001	< 0.0001	< 0.0001	<0.0001
Pentachlorophenol	ug/l	<0.02	<0.02	< 0.02	<0.02
Cypermethrin	ug/l	<0.002	< 0.002	< 0.002	< 0.002
Cypermethrin Identification	Text	Not	Not	Not	Not
		Detected	Detected	detected	detected
Diuron	ug/l	<0.1	<0.1	<0.1	<0.1
Isoproturon	ug/l	<0.1	<0.1	<0.1	<0.1
1,2,3-Trichlorobenzene	ug/l	<0.1	<0.1	<0.1	< 0.1
1,2,4-Trichlorobenzene	ug/l	<0.1	<0.1	<0.1	< 0.1
1,2-Dichloroethane	ug/l	<0.1	<0.1	<0.1	<0.1
1,3,5-Trichlorobenzene	ug/l	<0.1	<0.1	<0.1	<0.1
Benzene	ug/l	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride :-	ug/l	<0.1	<0.1	<0.1	<0.1
{Tetrachloromethane}					

Chloroform :-	ug/l	<0.1	<0.1	<0.1	<0.1
{Trichloromethane}					
Dichloromethane :-	ug/l	<0.5	<0.5	<0.5	<0.5
{Methylene Dichloride}					
Naphthalene	ug/l	<0.1	<0.1	<0.1	<0.1
Tetrachloroethylene :-	ug/l	<0.1	<0.1	<0.1	<0.1
{Perchloroethylene}					
Trichloroethylene :-	ug/l	<0.1	<0.1	<0.1	<0.1
{Trichloroethene}					

February 2020 Coastal Monitoring Results.

Groundwater Monitoring

		Site 1. Silent Pool	Site 2. Cemetery	Site 3. Frontier	Site 4. Four Corners	Site 5. Runway
		25/02/20	25/02/20	25/02/20	25/02/20	25/02/20
Analyte	Units					
Alkalinity to pH 4.5 as	mg/l	172	170	225	273	345
CaCO3						
Ammoniacal Nitrogen	mg/l	<0.300	<0.0300	<0.0300	<0.0300	<0.0300
as N						
Chloride	mg/l	1760	27.3	84.5	40.9	447
Nitrite as N	mg/l	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400
Nitrogen : Total	mg/l	5.6	8.34	6.71	<0.200	5.85
Oxidised as N						
Carbon, Organic : Total	mg/l	0.8	0.9	1	1.9	0.9
as C :- {TOC}						
Solids, Suspended at	mg/l	-	4.63	18.9	3.83	6.48
105 C						
Arsenic	mg/l	<1	3.45	2.72	7.55	5.95
Cadmium	mg/l	<0.1	<0.1	0.378	<0.1	<0.1
Lead	mg/l	<2	<2	3.35	<2	2.9
Zinc	mg/l	30.6	35.8	351	98.3	75
Calcium	mg/l	134	72.2	77.1	76.5	146
Magnesium	mg/l	125	6.61	22.9	21.9	45.8
Potassium	mg/l	35.4	7.28	7.54	5.06	17.4
Sodium	mg/l	954	21	59.2	40.7	234
Sulphate as SO4	mg/l	261	28.4	48.2	45.2	59.6
Mercury	mg/l	-	<0.01	<0.01	<0.01	<0.01
Bicarbonate as HCO3	mg/l	-	207	275	333	421
Nitrate as N	mg/l	-	<8.34	<6.71	<0.200	<5.85
Hydrocarbons Screen	mg/l	-	-	-	-	-
>C5 - C44						
1,2,3-Trichlorobenzene	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01
1,2,4-Trichlorobenzene	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01

1,3,5-Trichlorobenzene	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01
2,3,5,6-	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01
Tetrachloroaniline	1116/1	VO.001	\0.001	\0.001	\0.001	\0.001
2,3,5,6-	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
Tetrachlorothioanisole		10.002	.0.00			10.00
Aldrin	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
Chlorothalonil	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
Chlorpropham	mg/l	<0.005	<0.005	<0.005	<0.005	<0.005
DDE -op	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
DDE -pp	mg/l	<0.001	<0.001	<0.001	0.0041	0.0301
DDT -op	mg/l	<0.003	<0.003	<0.003	<0.003	0.00404
DDT -pp	mg/l	<0.002	<0.002	<0.002	0.0092	0.0353
Dichlobenil :- {2,6-	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
Dichlorobenzonitrile }		0.000				
Dieldrin	mg/l	<0.002	<0.002	<0.002	<0.002	< 0.002
Endosulfan A	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
Endosulfan B	mg/l	<0.004	<0.004	<0.004	<0.004	< 0.004
Endrin	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
HCH -alpha	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
HCH -beta	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
HCH -delta	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
HCH -epsilon	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
HCH -gamma :-	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
{Lindane}	O,					
Heptachlor	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
Hexachlorobenzene	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
Hexachlorobutadiene	mg/l	<0.003	<0.003	<0.003	<0.003	< 0.003
Isodrin	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
Methoxychlor	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
, Pendimethalin	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01
Pentachlorobenzene	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
Propachlor	mg/l	<0.001	<0.001	<0.001	<0.001	< 0.001
TDE - op	mg/l	<0.001	<0.001	<0.001	<0.001	0.00138
TDE - pp	mg/l	<0.002	<0.002	<0.002	0.00205	0.00964
Tecnazene	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
Tri-allate	mg/l	<0.006	<0.006	<0.006	<0.006	<0.006
Trifluralin	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002
Vinclozolin	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002
cis-Chlordane	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
cis-Heptachlor epoxide	mg/l	<0.003	<0.003	<0.003	<0.003	<0.003
trans-Chlordane	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
trans-Heptachlor	mg/l	<0.003	<0.003	<0.003	<0.003	<0.003
epoxide						
Atrazine	mg/l	<0.003	<0.004	<0.003	<0.003	<0.003
Atrazine-desethyl	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02
Atrazine-desisopropyl	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02
		1 .5.5-				

Azinphos-ethyl	mg/l	<0.006	<0.007	<0.006	<0.006	<0.006
Azinphos-methyl	mg/l	<0.003	<0.004	<0.003	<0.003	<0.003
Bendiocarb	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Bupirimate	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Carbophenothion	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Chlorfenvinphos	mg/l	<0.01	< 0.01	<0.01	<0.01	< 0.01
Chlorpyrifos-ethyl	mg/l	<0.002	<0.002	<0.002	< 0.002	<0.002
Chlorpyrifos-methyl	mg/l	<0.001	<0.001	< 0.001	< 0.001	<0.001
Coumaphos	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Cyanazine	mg/l	<0.006	<0.007	<0.006	<0.006	<0.006
Desmetryn	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Diazinon	mg/l	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorvos	mg/l	<0.004	<0.005	<0.004	<0.004	< 0.004
Dimethoate	mg/l	<0.006	< 0.007	<0.006	<0.006	<0.006
Ethion	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Ethofumesate	mg/l	<0.005	<0.006	<0.005	< 0.005	< 0.005
Fenchlorphos	mg/l	<0.005	<0.006	<0.005	< 0.005	< 0.005
Fenitrothion	mg/l	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
Fenpropimorph	mg/l	<0.007	<0.009	< 0.007	< 0.007	< 0.007
Fenthion	mg/l	<0.008	< 0.01	<0.008	<0.008	<0.008
Fonofos	mg/l	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iodofenphos	mg/l	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iprodione	mg/l	<0.008	< 0.01	<0.008	<0.008	<0.008
Irgarol 1051	mg/l	<0.005	<0.006	<0.005	< 0.005	< 0.005
Malathion	mg/l	<0.002	< 0.002	<0.002	< 0.002	< 0.002
Metalaxyl	mg/l	<0.008	< 0.01	<0.008	<0.008	<0.008
Metazachlor	mg/l	<0.005	<0.006	<0.005	< 0.005	< 0.005
Mevinphos	mg/l	<0.008	< 0.01	<0.008	<0.008	<0.008
Napropamide	mg/l	<0.005	<0.006	<0.005	< 0.005	< 0.005
Parathion-ethyl	mg/l	<0.004	<0.005	<0.004	< 0.004	< 0.004
Parathion-methyl	mg/l	<0.005	<0.006	<0.005	< 0.005	<0.005
Phorate	mg/l	<0.02	<0.02	<0.02	< 0.02	< 0.02
Pirimicarb	mg/l	<0.004	<0.005	<0.004	< 0.004	< 0.004
Pirimiphos-ethyl	mg/l	<0.005	<0.006	<0.005	< 0.005	< 0.005
Pirimiphos-methyl	mg/l	<0.003	< 0.004	< 0.003	< 0.003	< 0.003
Prochloraz	mg/l	<0.007	<0.009	< 0.007	< 0.007	< 0.007
Prometryn	mg/l	<0.005	<0.006	<0.005	< 0.005	<0.005
Propazine	mg/l	<0.002	< 0.002	<0.002	< 0.002	< 0.002
Propetamphos	mg/l	<0.005	<0.006	<0.005	< 0.005	<0.005
Propyzamide	mg/l	<0.005	<0.006	<0.005	< 0.005	<0.005
Simazine	mg/l	<0.003	< 0.004	< 0.003	< 0.003	< 0.003
Terbutryn	mg/l	<0.004	<0.005	< 0.004	< 0.004	< 0.004
Triazophos	mg/l	<0.005	<0.006	<0.005	<0.005	<0.005
Trietazine	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002
Bifenthrin	mg/l	<0.001	< 0.001	< 0.001	<0.001	<0.001
Cyfluthrin	mg/l	<0.003	< 0.003	< 0.003	<0.003	<0.003
	1 -	I .				

Cypermethrin	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002
Cypermethrin	mg/l	Not	Not	Not	Not	Not
Identification		detected.	detected.	detected.	detected.	detected.
Deltamethrin	mg/l	-	-	-	-	-
Flumethrin	mg/l	-	-	-	-	-
Lambda-cyhalothrin	mg/l	<0.002	<0.002	<0.002	<0.002	< 0.002
cis-Permethrin	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002
trans-Permethrin	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001
1,2-Dichloroethane	mg/l	-	<0.1	<0.1	<0.1	<0.1
Benzene	mg/l	-	<0.1	<0.1	<0.1	<0.1
Bromodichloromethane	mg/l	-	<0.1	<0.1	<0.1	<0.1
Bromoform :-	mg/l	-	<0.1	<0.1	<0.1	<0.1
{Tribromomethane}						
Chloroform :-	mg/l	-	<0.1	<0.1	<0.1	<0.1
{Trichloromethane}						

February 2020 Groundwater Monitoring Results.

Habitats Birds

Nesting Birds of Prey

As part of their work, the Gibraltar Ornithological and Natural History Society (GONHS) conducts bird of prey surveys on an annual basis during the breeding season. Records are kept on the nesting of Peregrines (*Falco peregrinus*), Common Kestrel (*Falco tinnunculus*), and Lesser Kestrel (*Falco naumanni*). These records are shown in the following section.

Lesser and Common Kestrel

Year	Lesser Kestrel	Common Kestrel
2010	16	11
2011	18	9
2012	13	8
2013	5	5
2014	4	6
2015	4	7
2016	1	7
2017	1	8
2018	0	5
2019	0	5
2020	0	6

Breeding Pairs of Lesser Kestrel & Common Kestrel in Gibraltar.

Yellow-legged Gulls

	Chicks	Eggs
January	0	0
February	0	0
March	0	0
April	0	0
May	68	32
June	82	3
July	0	0
August (counts)	0	0
September (counts)	0	0
October	0	0
November	0	0
December	0	0
Total	150	35

 $Yellow\mbox{-legged Gull chicks and eggs destroyed in 2020}.$

	Adults	1st/yr	2nd/yr	3rd/yr	Juveniles	Total
Jan	182	2	9	1	0	194
Feb	361	24	21	27	0	433
Mar	137	2	17	16	0	172
Apr	0	0	0	0	0	0
May	233	11	22	14	0	280
Jun	279	6	2	8	55	350
Jul	145	0	1	1	116	263
Aug (counts)	0	0	0	0	0	0
Sept (counts)	0	0	0	0	0	0
Oct	57	0	1	3	0	61
Nov	109	25	10	4	0	148
Dec	44	2	1	1	0	48
Total	1547	72	84	75	171	1949

Yellow-legged Gulls culled in 2020.

Peregrine Falcon (young fledged by site)

Year	North Face	Catalan Bay	Sandy Bay	Brian Navarro way	Med Steps	Camp Bay	Europa Point	Apes Den	Total
2010	0	0	3	2	0	2	0		7
2011	2	3	3	0		3	3		14
2012	0	3	2	0		1	2	0	8
2013	4	3	3	0	3	0	0		13
2014	3	1	2		0		0		6
2015	2	2	0	3		3	0	0	10
2016	3	3	3	0		3	0	0	14
2017	0	3	3	0	3	0	3	0	12
2018	0	3	3	2	0		3	2	13
2019	2	2	0	2	3		3	0	12
2020	3	0	0	3	0		3	4	13

Blank entries denote no pairs present at this site

 $\label{locations} \mbox{Locations and Breeding Success of Peregrines in Gibraltar}.$

Mammals

Barbary Macaques

Year	Population	Deaths	Births	Infant Deaths
2013	209	40	33	6
2014	196	27 (30 exported)	26	7
2015	158	7	39	3
2016	184	8	38	7
2017	198	28	27	8
2018	245	10	23	9
2019	247	10	25	15
2020	273	12	34	4

25

Barbary Macaque demographics.

Rock Gun	22
Middle Hill	23
Cable Car	28
Prince Philips Arch	22
Ohara`s Battery	7
Eastside	7
Anglian Way	50
Apes Den	40
Anglian Way 2	41
Farringdons/Moorish Castle	7

Barbary Macaque population and distribution data.

Waste Hazardous Waste

Hazardous waste materials are stored under strict license conditions, and then processed for trans-frontier shipment where they can be adequately disposed of. Typically consisting of waste oils and asbestos containing products, the table below shows a breakdown of total exported hazardous wastes in 2020.

Waste Code	Description of Waste	Total Exported (tonnes)
13 04 03*	Bilge oils from other navigation	7748
18 01 03*	Waste whose collection and disposal is subject to special requirements to prevent infection	4.1
18 01 08*	Cytotoxic and Cytostatic medicines	0.2
17 06 05*	Construction materials containing asbestos	6.08
08 01 11*	Waste paint and varnish containing organic solvents or other dangerous substances	1.02
16 03 05*	Organic wastes containing dangerous substances	0.5
20 01 23*	Discarded equipment containing chlorofluorocarbons	52
08 01 11*	Waste paint and varnish containing organic solvents or other dangerous substances	8.88
20 01 35*	Discarded electrical and electronic equipment other than those mentioned in 20 01 21 and 20 01 23 containing hazardous components	0.1
20 01 21*	Fluorescent tubes and other mercury containing waste	1.9
20 01 36	Discarded electrical and electronic equipment other than those mentioned in 20 01 21, 20 01 23 and 20 01 35	1.6
Gases in pressure containers 16 05 04* (Including Halons) containing dangerous substances		0.19
16 01 07*	Oil Filters	8.99
15 02 02*	Absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by dangerous substances.	6.18

15 01 10*	Packaging containing residues of or contaminated by dangerous substances	1
08 01 11*	Waste Paint and varnish containing organic solvents or other dangerous substances	1.87
14 06 03*	Other solvents and solvent mixtures	2.02
18 01 03*	Wastes whose collection and disposal is subject to special requirements in order to prevent infection	13.2
18 01 09	Medicines other than those mentioned in 180108	0.5
13 07 03*	Other fuels (including mixtures)	0.58
17 06 05*	Construction materials containing asbestos	6.66
10 01 04*	Oil fly ash and boiler dust	15.99
13 05 02*	Sludge from oil/water separators	19.25
15 02 02*	Absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by dangerous substances	20.31
13 05 02*	Sludge from oil/water separators	12.86
19 01 13*	Fly ash containing dangerous substances	2.04
19 01 11*	Bottom ash and slag containing dangerous substances	20.93
19 08 11*	Sludge containing dangerous substances from biological treatment of industrial waste water	25
16 01 07*	Oil Filters	13
15 02 02*	Absorbents	10.2
12 01 13*	Packaging containing residues of or contaminated by dangerous substances	1351.54
20 03 01	Mixed municipal waste Municipal wastes	30863.77
20 03 99	not otherwise specified	30603.77
18 01 08*	Cytotoxic and Cytostatic medicines	1.9
17 05 03*	Soils and stones containing dangerous substances	53.55
18 01 03*	Waste whose collection and disposal is subject to special requirements to prevent infection	55.06
18 01 08*	Cytotoxic and Cytostatic medicines	1.64
17 06 05*	Construction materials containing asbestos	25.96
08 01 11*	Waste paint and varnish containing organic solvents or other dangerous substances	8.47
08 01 11* 16 03 05*	,	8.47 1.16
	solvents or other dangerous substances	
16 03 05*	solvents or other dangerous substances Organic wastes containing dangerous substances Packaging containing residues of or contaminated	1.16
16 03 05* 15 01 10*	solvents or other dangerous substances Organic wastes containing dangerous substances Packaging containing residues of or contaminated by dangerous substances	1.16 2.37
16 03 05* 15 01 10* 06 02 04*	solvents or other dangerous substances Organic wastes containing dangerous substances Packaging containing residues of or contaminated by dangerous substances Sodium and potassium hydroxide	1.16 2.37 2.27
16 03 05* 15 01 10* 06 02 04* 13 07 03*	solvents or other dangerous substances Organic wastes containing dangerous substances Packaging containing residues of or contaminated by dangerous substances Sodium and potassium hydroxide Other fuels (including Mixtures) Other insulation materials consisting of or	1.16 2.37 2.27 559.484

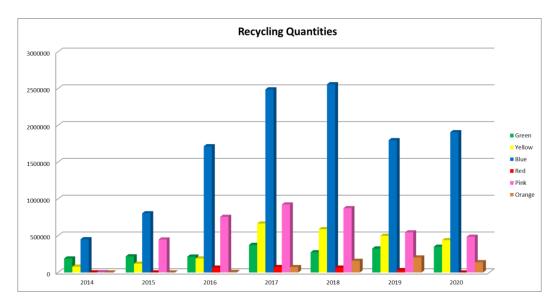
16 01 07*	Oil Filters	0.95
	Absorbents, filter materials (including oil filters	
15 02 02*	not otherwise specified), wiping cloths, protective	5.1
	clothing contaminated by dangerous substances	
15 01 10*	Packaging containing residues of or contaminated	2.04
	by dangerous substances	
08 01 11*	Waste paint and varnish containing organic	14.06
	solvents or other dangerous substances	
20 01 21*	Fluorescent tubes and other mercury containing	1.8
	waste	
	Discarded electrical and electronic equipment	
20 01 36	other than those mentioned in 20 01 21, 20 01 23	2.4
	and 20 01 35	
12 01 16*	Waste blasting material containing dangerous	54.2
42.07.02*	substances	
13 07 03*	Other fuels (including Mixtures)	0.39
14 06 03*	Other solvents and solvent mixtures	1.3
16 05 04 *	Gases in pressure containers (Including Halons)	0.15
	containing dangerous substances	
18 01 03*	Wastes whose collection and disposal is subject to	31.7
10.01.00	special requirements in order to prevent infection	0.2
18 01 09	Medicines other than those mentioned in 180108	0.3
19 01 11*	Bottom ash and slag containing dangerous	3.36
	substances Absorbents, filter materials (including oil filters	
15 02 02*	not otherwise specified), wiping cloths, protective	3.18
13 02 02	clothing contaminated by dangerous substances	5.10
13 05 02*	Sludge from oil/water separators	4.69
13 03 02	Construction Materials containing dangerous	4.03
17 06 05*	substances	3.21
10 01 04*	Oil fly ash and boiler dust	8.25
13 07 03*	Other Fuels (Including Mixtures)	9897.22
13 07 03*	Other Fuels (Including Mixtures)	10850
	Construction Materials containing dangerous	
17 06 05*	substances	64.92
17 05 03*	Soils and stones containing dangerous substances	883.5
13 04 03*	Bilge oils from other navigation	3757.4
	Discarded electrical and electronic equipment	
20 01 35*	other than those mentioned in 20 01 21 and 20	253.14
	01 23 containing hazardous components	
20.04.22*	Discarded equipment containing	CO 24
20 01 23*	chlorofluorocarbons	60.34
16 06 01*	Lead Batteries	121.26
20 03 03	Mixed municipal waste. Municipal wastes not	7604 02
20 03 99	otherwise specified	7684.82
16 01 07*	Oil Filters	0.41
	Absorbents, filter materials (including oil filters	
15 02 02*	not otherwise specified), wiping cloths, protective	3.32
	clothing contaminated by dangerous substances	
16 07 08*	Wastes containing oil	3.55

Trans-frontier shipments of hazardous waste in 2020.

Municipal Waste

Month Refuse (Kgs)		Bulky Items (Kgs)	Mattresses (Kgs)	
January	1778840	1,080,980	7560	
February	1,276,780	1,075,820	8260	
March	1,646,780	1,058,840	8120	
April	1,324,460	406,640	2660	
May	1,239,080	732,980	6240	
June	1,457,740	1,304,240	10,660	
July	1,316,920	1,458,860	8640	
August	1,332,440	1,087,960	9140	
September	1,328,640	1,103,360	9860	
October	1,448,760	1,155,900	6900	
November	1,367,460	920,160	11,840	
December	1,539,080	967,940	7480	
Total	17,056,980	12,353,680	97,360	

Municipal waste in Gibraltar in 2020.


Recycling

The following data shows rates for recycling in Gibraltar during 2020.

Key	
Bin Colour	Items discarded
Green	Glass
Yellow	Plastic, cans and tetrabrik
Blue	Paper and cardboard
Red	Batteries
Pink	Waste Electrical and Electronic Equipment (WEEE)
Orange	Waste cooking oil

Year 2020	Green Bin	Yellow Bin	Blue Bin	Red Bin	Pink Bin	Orange Bin	Total
Kgs	350,000	439,040	1,906,782	0	485,882	140,000	3,321,704

Recycling quantities for 2020.

Recycling quantities (2014-2020).

WEEE

Due to the mixed and often hazardous nature of WEEE, regulations are in place to ensure that all categories of this waste are responsibly handled, treated and disposed of where necessary. The table below highlights which categories are encompassed under this umbrella of enforcement, and details how much is being treated and recovered to create a new life cycle.

Year: 2020	Imported		Collected		Sent for to	reatment	Recovery
Categories	Quantity (No.)	Weight (tonnes)	Quantity (No.)	Weight (tonnes)	Quantity (No.)	Weight (tonnes)	%
Large Household appliances	2587	56.246	1954	70.27	10380	404.766	124.9333
Small Household appliances	17760.02	34.858	80	0.5235	2350	7.731	1.501807
IT and Telecoms Equipment	51781	97.255	1639	9.703	8251	57.092	9.976865
Consumer Equipment	2663	11.796	207	5.18	993	10.92	43.91319
Lighting equipment	256	256	2630	2.56	720	3.615	1
Electrical and electronic tools	584	13.648	13	0.305	0	0	2.23476
Toys, Leisure & Sports Equipment	1	17.822	11	0.04	2	0.04	0.224442
Medical devices	161	23.056	0	0	120	0.178	0
Monitoring & Control Instruments	33	0.271	0	0	0	0	0
Automatic dispensers	48	1.492	0	0	12	1.54	0
TOTAL	75874.02	512.444	6534	88.5815	22828	485.882	

WEEE movements and recovery in Gibraltar in 2020.

Incineration Waste

Data below shows types and weights of incinerated waste dealt with locally, and exported.

	_		
Type	οf	W	laste

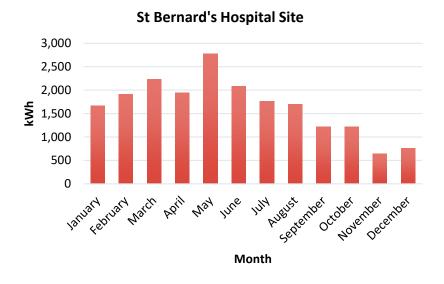
Type of waste	
Clinical Waste Incinerated (Kgs)	430590
Clinical waste Exported (Kgs)	91177.5
Cytotoxic Waste Exported (Kgs)	2535
Animal Incinerations (Number)	312
Human Cremations (Number)	76
Other wastes Incinerated (Kgs)	1325
Exported	
Fly Ash Exported (Kgs)	3924
Furnace Ash Exported (Kgs)	27112

Year 2020

Month	No. of Containers	Total Litres	Total Kgs
January	5725	337705	42545
February	0	0	0
March	5391	321448	40273
April	5176	308263	38667
May	5305	314740	39594.5
June	5540	327717	41264
July	5686	335715	42247
August	5953	352345	44330.5
September	6222	366680	46186.5
October	6753	398970	50193
November	7578	452952	56706
December	6867	407328	51196
Annual Total	66196	3923863	493202.5

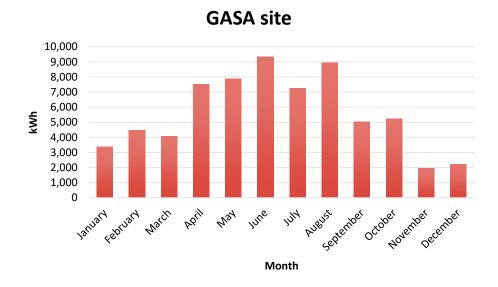
Total amount of clinical waste collected in 2020.

Energy

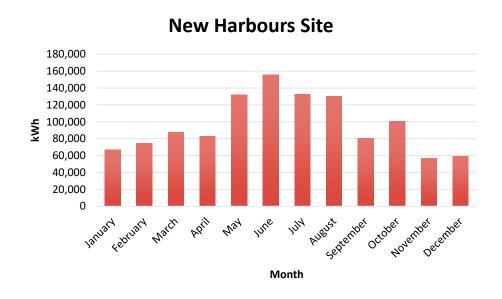

Lighting

Data below lists the total energy consumption from street, flood and traffic lighting in 2020.

Year 2020			
	Kilowatt Hours (kWh)		
Street lighting	1,165,367		
Flood lighting	56,955		
Traffic lighting	49,697		


Solar Energy

In line with EU targets for sourcing 20% of energy by 2020, H.M. Government of Gibraltar currently has a variety of solar energy projects in place with plans to increase this further. A breakdown of energy produced at existing sites is shown below.


Solar energy produced at St Bernard's Hospital

At St Bernard's Hospital, an installed capacity of 26 kW (peak) is in place. In 2020, a total of 19,915 kWh was generated.

Solar energy produced at GASA.

At GASA, an installed capacity of 87.7 kW (peak) is in place. In 2020, a total of 67,298 kWh was generated.

Solar energy produced at New Harbours.

At New Harbours, an installed capacity of 800 kW (peak) is in place. In 2020, a total of 1,160,304 kWh was generated.